
Author Profile

Haider Khan is a blockchain researcher/ writer specializing in interoperable blockchain
ecosystems. His research focuses on translating complex blockchain concepts into
accessible insights for diverse audiences, from cryptocurrency newcomers to seasoned
investors and technology enthusiasts. With a background in traditional finance, distributed
systems and tokenomics, Haider brings analytical depth to his exploration of emerging
blockchain technologies and their practical applications.

Contact Information

Available for research collaborations, consulting, and speaking engagements on
interoperability, Cosmos ecosystem, and cross-chain DeFi.

Email(s) : alik.defianalyst@gmail.com, khan.haiderali87@gmail.com

Website : https://blockchaindefispecialist.com/

LinkedIN : https://www.linkedin.com/in/haider-a-khan/

Nexus DeFi Lending Protocol API Documentation

Overview

Nexus is a decentralized lending protocol built on Ethereum that enables users to lend and
borrow digital assets without traditional intermediaries. This documentation provides
comprehensive information for developers looking to integrate the Nexus protocol into
their applications.

Key Features

• Permissionless lending and borrowing of supported assets

• Variable and fixed interest rate options

• Over-collateralized loan positions

• Liquidation protection mechanisms

• Flash loan functionality

• Governance participation

Prerequisites

Before integrating with the Nexus protocol, ensure you have:

mailto:alik.defianalyst@gmail.com
mailto:khan.haiderali87@gmail.com
https://blockchaindefispecialist.com/
https://www.linkedin.com/in/haider-a-khan/

• A development environment with Node.js (v16+)

• Knowledge of JavaScript/TypeScript and Web3 concepts

• An Ethereum wallet (MetaMask, WalletConnect, etc.)

• Test ETH and tokens on supported networks (Ethereum Mainnet, Goerli Testnet,
etc.)

• Ethers.js or Web3.js library

• A provider URL (Infura, Alchemy, etc.)

Supported Networks

Network Chain ID Contract Address

Ethereum Mainnet 1 0x7Fc66500c84A76Ad7e9c93437bFc5Ac33E2DDaE9

Goerli Testnet 5 0x4da27a545c0c5B758a6BA100e3a049001de870f5

Arbitrum 42161 0xBA5DdD1f9d7F570dc94a51479a000E3BCE967196

Optimism 10 0x76FB31fb4af56892A25e32cFC43De717950c9278

Quick Start Guide

This section provides basic integration steps to quickly implement Nexus lending
functionality.

1. Install the SDK

2. Initialize the SDK

https://docs.ethers.io/
https://web3js.readthedocs.io/

3. Connect User Wallet

4. Supply Assets

5. Borrow Assets

Core Concepts

Understanding these key concepts is essential for successful integration with the Nexus
protocol.

Lending Pools

Lending pools are the core component of the Nexus protocol. Each supported asset has a
corresponding lending pool where users can supply assets and borrow against their
collateral.

Supply and Borrow Mechanisms

When users supply assets to the protocol:

• They receive nTokens representing their share of the lending pool

• Their supplied assets begin earning interest immediately

• Assets become available as collateral (if enabled)

When users borrow from the protocol:

• They must have sufficient collateral value

• They can choose between variable and stable interest rates

• Health factor must remain above 1.0 to avoid liquidation

Interest Rates

Nexus uses a dynamic interest rate model:

• Utilization Rate: The percentage of pool funds currently borrowed

• Variable Interest Rate: Adjusts based on utilization, rises as utilization increases

• Stable Interest Rate: Fixed at the time of borrowing but can be rebalanced under
certain conditions

Collateral and Loan-to-Value (LTV)

Each asset has specific risk parameters:

• Loan-to-Value (LTV): Maximum percentage of collateral value that can be borrowed

• Liquidation Threshold: When health factor falls below 1.0, position can be
liquidated

• Liquidation Penalty: Fee paid by borrower during liquidation

Health Factor

The health factor is a numeric representation of loan safety:

• Health Factor = Total Collateral Value in ETH × Liquidation Threshold ÷ Total Borrows
in ETH

• Must remain > 1.0 to avoid liquidation

• Higher health factor indicates safer position

Authentication & Security

Nexus uses standard Web3 authentication methods for secure interaction with the
protocol.

Connecting Wallets

Users must connect their Ethereum wallet to interact with Nexus. Supported connection
methods include:

• MetaMask

• WalletConnect

• Coinbase Wallet

• Fortmatic

• Portis

Transaction Signing

All interactions with the protocol require signed transactions:

1. Transaction is created (e.g., supply assets, borrow)

2. User signs the transaction with their private key

3. Signed transaction is submitted to the blockchain

4. Transaction is processed, and the operation completes

Permission Management

Different actions in the protocol require specific permissions:

• Token Approvals: Users must approve the protocol to spend their ERC20 tokens

• Delegation: Users can delegate borrowing power to other addresses

• Contract Interactions: Smart contract allowances for flash loans and other
advanced operations

Always use the minimum required permissions for security best practices.

API Reference

The Nexus API provides methods to interact with all aspects of the protocol.

Protocol Data Methods

getReserveData(asset)

Retrieves detailed information about a specific asset reserve.

Parameters:

• asset (string): The address of the asset

Returns: Object containing:

• utilizationRate: Current utilization of the reserve

• availableLiquidity: Amount available for borrowing

• totalStableDebt: Total debt borrowed at stable rate

• totalVariableDebt: Total debt borrowed at variable rate

• liquidityRate: Current supply APY

• variableBorrowRate: Current variable borrow APY

• stableBorrowRate: Current stable borrow APY

• averageStableBorrowRate: Weighted average of stable rates

• ltv: Maximum loan-to-value ratio

• liquidationThreshold: Threshold for liquidation

• liquidationBonus: Bonus for liquidators

• isActive: Whether reserve is active

• isFrozen: Whether reserve is frozen

Parameters:

• user (string): The address of the user

Returns: Object containing:

• totalCollateralETH: Total collateral in ETH

• totalDebtETH: Total debt in ETH

• availableBorrowsETH: Available borrowing power in ETH

• currentLiquidationThreshold: Current liquidation threshold

• ltv: Current loan to value

• healthFactor: Current health factor

User Action Methods

supply(params)

Supplies an asset to the Nexus protocol.

Parameters:

• params (object):

o asset (string): The address of the asset

o amount (BigNumber): The amount to supply

o recipient (string, optional): The address that will receive the nTokens

o referralCode (number, optional): Referral code

Returns: Transaction response object

Withdraws supplied assets from the protocol.

Parameters:

• params (object):

o asset (string): The address of the asset

o amount (BigNumber): The amount to withdraw (use MAX_UINT256 for
maximum)

o recipient (string, optional): The address that will receive the withdrawn
assets

Returns: Transaction response object

repay(params)

Repays a borrowed asset.

Parameters:

• params (object):

o asset (string): The address of the asset

o amount (BigNumber): The amount to borrow

o interestRateMode (number): 1 for stable, 2 for variable

o referralCode (number, optional): Referral code

o recipient (string, optional): The address that will receive the borrowed assets

Returns: Transaction response object

const receipt = await tx.wait();

console.log(`Borrow transaction confirmed: ${receipt.transactionHash}`);

repay(params)

Repays a borrowed asset.

Parameters:

• params (object):

o asset (string): The address of the asset

o amount (BigNumber): The amount to repay (use MAX_UINT256 for full
repayment)

o interestRateMode (number): 1 for stable, 2 for variable

o onBehalfOf (string, optional): The address of the borrower (if repaying on
behalf)

Returns: Transaction response object

setUserUseReserveAsCollateral(params)

Enables or disables an asset as collateral.

Parameters:

• params (object):

o asset (string): The address of the asset

o useAsCollateral (boolean): True to use as collateral, false otherwise

Returns: Transaction response object

swapBorrowRateMode(params)

Switches between stable and variable borrow rate modes.

Parameters:

• params (object):

o asset (string): The address of the asset

o interestRateMode (number): The current interest rate mode (1 for stable, 2 for
variable)

Returns: Transaction response object

Advanced Methods

flashLoan(params)

Executes a flash loan.

Parameters:

• params (object):

o assets (string[]): Array of asset addresses

o amounts (BigNumber[]): Array of amounts to borrow

o modes (number[]): Array of interest rate modes (0 for no debt, 1 for stable, 2
for variable)

o onBehalfOf (string): The address that will incur debt if modes[i] > 0

o params (string): Encoded parameters for the receiver

o referralCode (number, optional): Referral code

Returns: Transaction response object

liquidationCall(params)

Liquidates an undercollateralized position.

Parameters:

• params (object):

o collateralAsset (string): The address of the collateral asset

o debtAsset (string): The address of the debt asset

o user (string): The address of the borrower

o debtToCover (BigNumber): The amount of debt to cover

o receiveAToken (boolean): Whether to receive the collateral as aToken or the
underlying asset

Returns: Transaction response object

Sample Implementations

Basic Lending dApp Implementation

This example demonstrates a simple React component for supplying assets to the
protocol:

javascript

Copy

import React, { useState, useEffect } from 'react';

import { ethers } from 'ethers';

import { NexusSDK } from '@nexus-defi/sdk';

function SupplyForm() {

 const [asset, setAsset] = useState('');

 const [amount, setAmount] = useState('');

 const [nexus, setNexus] = useState(null);

 const [assets, setAssets] = useState([]);

 const [loading, setLoading] = useState(false);

 const [error, setError] = useState('');

 const [success, setSuccess] = useState('');

 // Initialize SDK on component mount

 useEffect(() => {

 async function initialize() {

 try {

 // Request access to user's wallet

 await window.ethereum.request({ method: 'eth_requestAccounts' });

 // Create provider and SDK instance

 const provider = new ethers.providers.Web3Provider(window.ethereum);

 const signer = provider.getSigner();

 const nexusInstance = new NexusSDK({

 provider,

 network: 'mainnet'

 });

 nexusInstance.connect(signer);

 // Get available assets

 const availableAssets = await nexusInstance.getReservesList();

 const assetDetails = await Promise.all(

 availableAssets.map(async (assetAddress) => {

 const data = await nexusInstance.getReserveData(assetAddress);

 const tokenMetadata = await nexusInstance.getTokenMetadata(assetAddress);

 return {

 address: assetAddress,

 symbol: tokenMetadata.symbol,

 decimals: tokenMetadata.decimals,

 liquidityRate: data.liquidityRate

 };

 })

);

 setNexus(nexusInstance);

 setAssets(assetDetails);

 } catch (err) {

 setError('Failed to initialize: ' + err.message);

 }

 }

 initialize();

 }, []);

 // Handle asset supply

 const handleSupply = async (e) => {

 e.preventDefault();

 setLoading(true);

 setError('');

 setSuccess('');

 try {

 const selectedAsset = assets.find(a => a.address === asset);

 const amountInWei = ethers.utils.parseUnits(amount, selectedAsset.decimals);

 // First approve token spending

 await nexus.approveToken(asset, amountInWei);

 // Then supply to protocol

 const tx = await nexus.supply({

 asset: asset,

 amount: amountInWei,

 recipient: await nexus.signer.getAddress()

 });

 const receipt = await tx.wait();

 setSuccess(`Successfully supplied ${amount} ${selectedAsset.symbol}! Transaction:
${receipt.transactionHash}`);

 setAmount('');

 } catch (err) {

 setError('Transaction failed: ' + err.message);

 } finally {

 setLoading(false);

 }

 };

 return (

 <div className="supply-form">

 <h2>Supply Assets</h2>

 {error && <div className="error">{error}</div>}

 {success && <div className="success">{success}</div>}

 <form onSubmit={handleSupply}>

 <div className="form-group">

 <label>Asset:</label>

 <select

 value={asset}

 onChange={(e) => setAsset(e.target.value)}

 required

 >

 <option value="">Select an asset</option>

 {assets.map((a) => (

 <option key={a.address} value={a.address}>

 {a.symbol} - APY: {(a.liquidityRate * 100).toFixed(2)}%

 </option>

))}

 </select>

 </div>

 <div className="form-group">

 <label>Amount:</label>

 <input

 type="number"

 value={amount}

 onChange={(e) => setAmount(e.target.value)}

 min="0"

 step="any"

 required

 />

 </div>

 <button type="submit" disabled={loading}>

 {loading ? 'Processing...' : 'Supply'}

 </button>

 </form>

 </div>

);

}

export default SupplyForm;

Python Integration Example

python

Copy

from web3 import Web3

from eth_account import Account

import json

import os

Load ABI

with open('nexus_lending_pool_abi.json', 'r') as f:

 LENDING_POOL_ABI = json.load(f)

with open('erc20_abi.json', 'r') as f:

 ERC20_ABI = json.load(f)

Connect to Ethereum node

web3 = Web3(Web3.HTTPProvider(os.environ.get('INFURA_URL')))

Contract addresses

LENDING_POOL_ADDRESS = '0x7Fc66500c84A76Ad7e9c93437bFc5Ac33E2DDaE9'

USDC_ADDRESS = '0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48'

Initialize contracts

lending_pool = web3.eth.contract(address=LENDING_POOL_ADDRESS,
abi=LENDING_POOL_ABI)

usdc = web3.eth.contract(address=USDC_ADDRESS, abi=ERC20_ABI)

Load account (never hardcode private keys in production)

private_key = os.environ.get('PRIVATE_KEY')

account = Account.from_key(private_key)

wallet_address = account.address

def supply_usdc(amount_decimal):

 """

 Supply USDC to the Nexus protocol

 Args:

 amount_decimal: Amount in USDC (e.g., 100.0 for 100 USDC)

 """

 # Convert to wei (USDC has 6 decimals)

 amount = int(amount_decimal * 10**6)

 # Check balance

 balance = usdc.functions.balanceOf(wallet_address).call()

 if balance < amount:

 raise ValueError(f"Insufficient USDC balance. Have {balance/10**6}, need
{amount_decimal}")

 # 1. Approve token spending

 approve_tx = usdc.functions.approve(LENDING_POOL_ADDRESS,
amount).build_transaction({

 'from': wallet_address,

 'nonce': web3.eth.get_transaction_count(wallet_address),

 'gas': 150000,

 'gasPrice': web3.to_wei('50', 'gwei')

 })

 signed_approve_tx = web3.eth.account.sign_transaction(approve_tx, private_key)

 approve_tx_hash = web3.eth.send_raw_transaction(signed_approve_tx.rawTransaction)

 approve_receipt = web3.eth.wait_for_transaction_receipt(approve_tx_hash)

 print(f"Approval successful: {approve_receipt.transactionHash.hex()}")

 # 2. Supply to protocol

 supply_tx = lending_pool.functions.deposit(

 USDC_ADDRESS,

 amount,

 wallet_address,

 0 # referral code

).build_transaction({

 'from': wallet_address,

 'nonce': web3.eth.get_transaction_count(wallet_address),

 'gas': 250000,

 'gasPrice': web3.to_wei('50', 'gwei')

 })

 signed_supply_tx = web3.eth.account.sign_transaction(supply_tx, private_key)

 supply_tx_hash = web3.eth.send_raw_transaction(signed_supply_tx.rawTransaction)

 supply_receipt = web3.eth.wait_for_transaction_receipt(supply_tx_hash)

 print(f"Supply successful: {supply_receipt.transactionHash.hex()}")

 return supply_receipt.transactionHash.hex()

def get_user_data():

 """Get user account data from the protocol"""

 data = lending_pool.functions.getUserAccountData(wallet_address).call()

 return {

 'totalCollateralETH': web3.from_wei(data[0], 'ether'),

 'totalDebtETH': web3.from_wei(data[1], 'ether'),

 'availableBorrowsETH': web3.from_wei(data[2], 'ether'),

 'currentLiquidationThreshold': data[3] / 10000, # basis points to percentage

 'ltv': data[4] / 10000, # basis points to percentage

 'healthFactor': data[5] / 1e18

 }

if __name__ == "__main__":

 # Example: Supply 100 USDC

 try:

 tx_hash = supply_usdc(100.0)

 print(f"Supply transaction: https://etherscan.io/tx/{tx_hash}")

 # Display user data after supply

 user_data = get_user_data()

 print("\nUser Account Data:")

 for key, value in user_data.items():

 print(f"{key}: {value}")

 except Exception as e:

 print(f"Error: {str(e)}")

Ruby Integration Example

ruby

Copy

require 'eth'

require 'json'

require 'httparty'

class NexusClient

 LENDING_POOL_ADDRESS = '0x7Fc66500c84A76Ad7e9c93437bFc5Ac33E2DDaE9'

 def initialize(provider_url, private_key)

 @client = Eth::Client.new(provider_url)

 @key = Eth::Key.new(priv: private_key)

 @address = @key.address

 # Load ABIs

 lending_pool_abi = JSON.parse(File.read('nexus_lending_pool_abi.json'))

 @lending_pool = Eth::Contract.from_abi(name: 'LendingPool', address:
LENDING_POOL_ADDRESS, abi: lending_pool_abi)

 puts "Initialized with address: #{@address}"

 end

 def get_reserve_data(asset_address)

 data = @client.call(@lending_pool, 'getReserveData', asset_address)

 {

 utilization_rate: data[0] / 1e27,

 availability_liquidity: data[1],

 total_stable_debt: data[2],

 total_variable_debt: data[3],

 liquidity_rate: data[4] / 1e27,

 variable_borrow_rate: data[5] / 1e27,

 stable_borrow_rate: data[6] / 1e27,

 average_stable_rate: data[7] / 1e27,

 liquidity_index: data[8] / 1e27,

 variable_borrow_index: data[9] / 1e27,

 last_update_timestamp: data[10]

 }

 end

 def get_user_account_data

 data = @client.call(@lending_pool, 'getUserAccountData', @address)

 {

 total_collateral_eth: data[0] / 1e18,

 total_debt_eth: data[1] / 1e18,

 available_borrows_eth: data[2] / 1e18,

 current_liquidation_threshold: data[3] / 10000,

 ltv: data[4] / 10000,

 health_factor: data[5] / 1e18

 }

 end

 def supply_asset(asset_address, amount, token_decimals = 18)

 # First approve token spending

 erc20_abi = JSON.parse(File.read('erc20_abi.json'))

 token = Eth::Contract.from_abi(name: 'ERC20', address: asset_address, abi: erc20_abi)

 # Convert amount to wei equivalent

 amount_in_wei = (amount * 10**token_decimals).to_i

 # Approve

 approve_data = token.approve.encode_data(LENDING_POOL_ADDRESS,
amount_in_wei)

 approve_tx = build_transaction(asset_address, approve_data)

 approve_receipt = send_transaction(approve_tx)

 puts "Approval transaction sent: #{approve_receipt['transactionHash']}"

 # Supply

 supply_data = @lending_pool.deposit.encode_data(asset_address, amount_in_wei,
@address, 0)

 supply_tx = build_transaction(LENDING_POOL_ADDRESS, supply_data)

 supply_receipt = send_transaction(supply_tx)

 puts "Supply transaction sent: #{supply_receipt['transactionHash']}"

 return supply_receipt

 end

 private

 def build_transaction(to, data)

 nonce = @client.get_nonce(@address)

 tx = {

 from: @address,

 to: to,

 value: 0,

 gas: 250000,

 gas_price: @client.gas_price,

 data: data,

 nonce: nonce

 }

 return tx

 end

 def send_transaction(tx)

 signed_tx = @key.sign_transaction(tx)

 tx_hash = @client.send_transaction(signed_tx)

 puts "Waiting for transaction to be mined..."

 receipt = nil

 30.times do

 sleep 2

 receipt = @client.get_transaction_receipt(tx_hash)

 break if receipt

 end

 raise "Transaction not mined after 60 seconds" unless receipt

 return receipt

 end

end

Usage example

if __FILE__ == $0

 infura_key = ENV['INFURA_KEY']

 private_key = ENV['PRIVATE_KEY']

 provider_url = "https://mainnet.infura.io/v3/#{infura_key}"

 nexus = NexusClient.new(provider_url, private_key)

 # Get account data

 account_data = nexus.get_user_account_data

 puts "Account data:"

 puts account_data.inspect

 # Get reserve data for USDC

 usdc_address = '0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48'

 reserve_data = nexus.get_reserve_data(usdc_address)

 puts "USDC reserve data:"

 puts reserve_data.inspect

 # Supply 100 USDC (USDC has 6 decimals)

 if ARGV[0] == 'supply'

 receipt = nexus.supply_asset(usdc_address, 100, 6)

 puts "Supply completed: #{receipt['transactionHash']}"

 end

end

Troubleshooting

This section covers common issues encountered when integrating with the Nexus protocol.

Transaction Errors

Error Possible Cause Solution

Insufficient
allowance

Token approval transaction
failed or is too low

Check token approval status and
increase allowance if needed

Health factor below
threshold

Attempting to borrow too
much against collateral

Supply more collateral or borrow less

Not enough liquidity
Trying to borrow more than
available in the pool

Borrow less or try a different asset

Slippage exceeded
Price movement during
transaction

Increase slippage tolerance or try
again

Reverted General transaction failure
Check parameters and transaction
data

Gas Optimization

To optimize gas usage when interacting with the protocol:

1. Batch operations: Use the batch function when performing multiple operations

2. Gas price strategy: Use a gas price oracle to determine optimal gas price

3. Gas estimation: Always estimate gas before sending transactions

4. Nonce management: Properly manage nonces to avoid stuck transactions

Wallet Connection Issues

Common wallet connection issues and solutions:

1. MetaMask not detected:

o Ensure MetaMask extension is installed and unlocked

o Add a detection loop that checks for window.ethereum periodically

2. Wrong network:

o Detect network mismatch and prompt user to switch

o Implement automatic network switching (requires user permission)

return true;

Debugging Smart Contract Interactions

For debugging contract interactions:

1. Event logging: Monitor emitted events for transaction status

2. Transaction simulation: Use services like Tenderly to simulate transactions before
sending

3. Error decoding: Decode revert reasons for better error messages

Versioning and Updates

The Nexus protocol follows semantic versioning (SemVer) for its smart contracts and SDK,
with version numbers in the format of MAJOR.MINOR.PATCH.

Contract Versioning

Version
Release
Date

Key Changes Status

3.0.0 2025-01-15 Governance token integration, yield strategies Current

2.1.0 2024-09-10
Flash loan fee adjustment, improved interest rate
model

Supported

2.0.0 2024-05-22 Multi-chain support, gas optimizations Supported

1.0.0 2023-11-08 Initial mainnet release Deprecated

Migration Guides

From v2.x to v3.0.0

The v3.0.0 release includes breaking changes to the lending pool interface. Key migration
steps:

1. Updated contract addresses: All lending pools have new addresses

2. Interest rate model changes: Recalculate expected rates with the new model

3. New governance features: Integrate with governance token if needed

Example of handling deprecated functions:

Glossary

Term Definition

APY
Annual Percentage Yield. The effective annual rate of return taking into
account compounding interest.

Collateral Assets deposited by users that secure borrowed positions.

Flashloan
A type of uncollateralized loan that must be borrowed and repaid within
a single transaction.

Health Factor
A numeric representation of the safety of a borrowed position relative
to the collateral provided.

Liquidation
The process of selling a borrower's collateral to repay their debt when
their health factor falls below 1.

Liquidation
Threshold

The percentage of collateral value at which a position is considered
undercollateralized and can be liquidated.

LTV (Loan-to-
Value)

The ratio of borrowed amount to collateral value, expressed as a
percentage.

nToken Interest-bearing tokens representing deposits in the Nexus protocol.

Stable Rate
A fixed interest rate that can still be rebalanced under certain
conditions.

Utilization Rate The percentage of deposited funds currently borrowed by users.

Variable Rate An interest rate that changes based on the utilization rate of the pool.

Gas
The computational cost of executing transactions on the Ethereum
network.

Smart Contract
Self-executing code deployed on a blockchain that automatically
implements the terms of an agreement.

Wallet
Software that stores private keys and allows interaction with the
blockchain.

Important Security Considerations

When integrating with the Nexus protocol, keep these security best practices in mind:

1. Always verify transactions: Confirm transaction details before signing

2. Monitor health factor: Regularly check positions to avoid liquidation

3. Set sensible gas limits: Prevent out-of-gas errors

4. Implement reentrancy protection: Guard against reentrancy attacks in smart
contracts

5. Audit integrations: Have third-party security audits for production implementations

6. Keep private keys secure: Never expose private keys in client-side code

7. Stay updated: Always use the latest SDK version with security patches

